Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Canan Kazak, ${ }^{\text {a* }}$ Hakan Göker ${ }^{\text {b }}$ and Semra Íde ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139, Kurupelit-Samsun, Turkey,
${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Ankara University, TR-06100 Tandogan, Ankara, Turkey, and ${ }^{\text {c }}$ Department of Physics Engineering, Hacettepe University, TR-06532 Beytepe, Ankara, Turkey

Correspondence e-mail: ckazak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.112$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Acetylphenyl 5-methylthiophene-2carboxylate

The non- H atoms of the molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$, form three essentially planar fragments, viz. the thiophene ring with the methyl C atom and carboxylate group (maximum deviation $0.041 \AA$; fragment A), the oxyphenyl ring with the central acetyl C atom $(0.029 \AA ; B)$, and the acetyl group together with the phenyl C atom bonded to it ($<0.001 \AA ; C$). These planes form dihedral angles of 88.33 (7) ${ }^{\circ}$ for A / B and 71.9 (2) ${ }^{\circ}$ for B / C. The crystal structure is stabilized by intermolecular interactions of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type $[\mathrm{C} \cdots \mathrm{O}=3.492(5) \AA$ A .

Comment

The title compound, (I), is a precursor used for the synthesis of 5-(4H-4-oxo-1-benzopyran-2-yl)-2-thiophenecarboxaldehyde (Göker et al., 2000). The synthesis of (I) was performed by the esterification of 2^{\prime}-hydroxyacetophenone with 5-methyl-2thiophenecarboxylic acid chloride in pyridine, as is shown in the Scheme. The structure of (I) was assigned based on the NMR, mass spectroscopy and elemental analysis. Here we report the results of the X-ray diffraction study.

An ORTEPIII (Burnett \& Johnson, 1996) plot of (I) is shown in Fig. 1. The molecule of (I) is composed of three essentially planar fragments: the thiophene ring with the adjacent methyl and carboxylate groups is planar within $0.041 \AA$, the oxyphenyl group with the central acetyl atom shows a maximum deviation of $0.029 \AA$, and the acetyl group with the phenyl C atom, bonded to it, is planar within the precision of the experiment (maximum deviation less than $0.001 \AA$). The planes of the first two fragments are orthogonal to each other [dihedral angle is equal to $88.33(7)^{\circ}$]; the orthoacetyl group plane is also almost normal to the benzene ring [dihedral angle $71.9(2)^{\circ}$].

The crystal structure is stabilized by intermolecular interactions of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type $\left[\mathrm{C} 14 \cdots \mathrm{O} 2^{\mathrm{i}} 3.492(5) \AA, \mathrm{C} 14-\right.$ H143 0.97 (4) \AA and $\mathrm{C} 14-\mathrm{H} 143 \cdots \mathrm{O} 2^{\mathrm{i}} 154(3)^{\circ}$; symmetry code: (i) $x-1, y, z]$.

Experimental

5-Methyl-2-thiophenecarboxylic acid ($8 \mathrm{~g}, 56.3 \mathrm{mmol}$) in 50 ml of SOCl_{2} was refluxed for 2 h ; the excess of the reagent was then

Received 10 April 2003

Accepted 27 June 2003
Online 23 August 2003
\qquad

Figure 1
An ORTEPIII drawing of the title compound with the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level; H atoms are shown as small spheres of arbitrary radius.
evaporated under reduced pressure. o-Hydroxyacetophenone (7.65 g , 56.3 mmol) and 20 ml of pyridine were added to the residue and the mixture was heated for 0.5 h at 353 K . The mixture was then cooled and poured into ice water, acidified with HCl , and the resulting precipitate was filtered and washed with water. Crystallization from EtOH gave (I) ($12.7 \mathrm{~g}, 86.8 \%$) as colourless crystals, m.p. 383-385 K. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$: C $64.60, \mathrm{H} 4.65, \mathrm{~S} 12.32 \%$; found: C 64.55 , H 4.64, S 12.16%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=260.30$
Orthorhombic, Pbca
$a=8.0088$ (11) \AA 。
$b=14.3163(16) \AA$
$c=22.103(3) \AA$
$V=2534.2(5) \AA^{3}$
$Z=8$
$D_{x}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.928, T_{\text {max }}=0.951$
2551 measured reflections
2551 independent reflections

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.6-26.3^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

1275 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.3^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 17$
$l=0 \rightarrow 27$
3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.112$
$S=0.98$
2551 reflections
211 parameters
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 8$	$1.718(3)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.203(3)$
$\mathrm{S} 1-\mathrm{C} 10$	$1.717(3)$	$\mathrm{O} 3-\mathrm{C} 13$	$1.214(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.407(3)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.492(5)$
$\mathrm{O} 1-\mathrm{C} 11$	$1.359(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.459(4)$
$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 8$	$91.83(14)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 13$	$122.0(3)$
$\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 2$	$115.4(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.8(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$117.4(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$	$118.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 13$	$120.6(3)$		

The H atoms were located in a difference map and refined isotropically. The $\mathrm{C}-\mathrm{H}$ bond distances range from 0.89 (3) to 0.99 (5) \AA, while $U_{\text {iso }}$ values for H atoms are in the range $0.036-$ $0.109 \AA^{2}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Göker, H., Süzen, S., Kus, C.\& Boykin, D. W. (2000). Heterocycl. Commun. 6, 385-390.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

